Individuelles Lernen im Rahmen von mathematischen Brückenkursen – Math-Bridge: Ein Werkstattbericht

Reinhard Hochmuth*, Rolf Biehler**, Pascal R. Fischer*, Thomas Wassong**

* Institut für Mathematik Universität Kassel

** Institut für Mathematik Universität Paderborn

23. Februar 2011

Übersicht

Das Projekt

(Meta-)Datenstruktur

Pädagogische Szenarien

Evaluation

Motivation

Das Proiekt

0000

derzeitige Situation in der EU:

- Brückenkurse weder national noch international vernetzt
- Materialien selten mehrsprachig, interoperabel oder semantisch durchsuchbar
- selten adaptiv (an die Defizite und den jeweiligen Studiengang des Lerners)

Rahmendaten

Math-Bridge:

- ► EU-Projekt im Rahmen der Förderlinie eContentPlus
- ► Laufzeit: Mai 2009 Januar 2012
- ▶ Projektvolumen: 3,6 Mio €
- Projektkoordination: DFKI PD Dr. Erika Melis †
- ▶ http://www.math-bridge.org

Ziele

international verwendbares Material für Brückenkurse bereitstellen sowie Empfehlungen für deren Einsatz geben

- Definition einheitlicher, sowohl inhaltlicher als auch didaktischer Rahmenvorgaben
- mehrsprachiger Content (Englisch, Deutsch, Französisch, Finnisch, Niederländisch, Spanisch, Bulgarisch)
- adaptives Lernsystem zur Unterstützung selbständigen Lernens (Weiterentwicklung von ActiveMath)
- Einsatzszenarien

beteiligte Institutionen

- DFKI Saarbrücken
- Universität des Saarlandes
- Universitäten Kassel und Paderborn
- ERGOSIGN GmbH
- Tampere University of Technology
- Open University Netherlands
- Eötvös Loránd University Budapest
- Universität Wien
- Université Montpellier II
- Universidad Carlos III de Madrid

Hintergrund: Inhalte

Das Proiekt

00000

Contentpartner: Deutschland, Finnland, Niederlande, Österreich

- bringen erprobtes Material (Lernmaterial, diagnostische Tests und Assessmenttests) ein
- sowie umfassende Erfahrungen im Design und der Durchführung von Blended-Learning-basierten Vorkursen

(Meta-)Datenstruktur

(Meta-)Datenstruktur in ActiveMath/Math-Bridge

Das bisherige Lernmaterial der Content-Partner wird in ein einheitliches Format transformiert und muss dafür in Lernobjekte atomisiert werden.

ActiveMath/Math-Bridge benötigt für seine Funktionalitäten für jedes einzelne Lernobjekt zwei Arten von Metadaten:

- Struktur-Metadaten
- pädagogische Metadaten

Auswahl der Inhalte / Ontologie

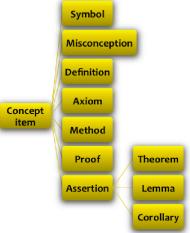
basierend auf Core Taxonomy for Mathematical Sciences Education

(http://people.uncw.edu/hermanr/mathtax/)

- Umfrage unter allen Partnern, welche Inhalte sie in ihren Studiengängen als relevant erachten
- Berücksichtigung des SEFI-Curriculums (Europäische Gesellschaft für Ingenieur-Ausbildung)
- reduziert auf die für Brückenkurse relevanten Inhalte.

Struktur-Metadaten

Das Projekt


Abbildung der mathematischen Struktur

- Relationen
- ► Typen von Lernobjekten

Struktur-Metadaten: Lernobjekttypen

Struktur-Metadaten: Relationen

- äußeres Netz: Symbole werden untereinander verknüpft
- inneres Netz: welche Lernobjekte gehören zu welchen Symbolen
- parallel zu dieser Struktur k\u00f6nnen f\u00fcr jedes LO inhaltliche Voraussetzungen definiert werden

Pädagogische Metadaten

hauptsächlich bei Beispielen und Aufgaben benötigt

- 4 Kompetenzen in 3 Leveln
- 3 Schwierigkeitsstufen (a-priori)
- Field-of-Study

Pädagogische Metadaten – 4 Kompetenzen

technical problem solving real-world-modelling

Rechentechniken, kalkülorientiert innermathematisches Problemlösen Modellieren und Lösen von außermathematischen Problemen

communication

Kommunizieren, Erklären, Begründen ...

Pädagogische Metadaten – 3 Kompetenzlevel

reproduction Reproduktion von bekannten Fakten und

Algorithmen im bekannten Kontext

connection Verbindung mathematischer Fakten und Routinen;

mehrschrittige Aufgaben in Kontexten, die bekannten

Kontexten ähneln

reflection komplexe Aufgaben, die eine Reflexion von

> Ergebnisse auch hinsichtlich des eingeschlagenen Lösungsprozesses auf der Metaebene erfordern.

Pädagogische Metadaten – Codebook

Zur Qualitätssicherung wurde ein Codebook entwickelt, welches mit Hilfe von Beispielitems und genauen Begründungen beschreibt, wie die Kompetenzen in ihren 3 Leveln zu vergeben sind.

Lernermodell

Um den Lernfortschritt zu dokumentieren, wird jede Bearbeitung einer Aufgabe in einem individuellen Lernermodell verrechnet:

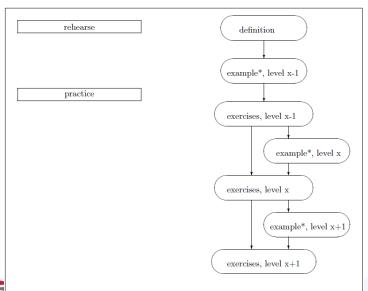
- Daten werden für jedes Paar von Symbolen und Kompetenzen einer Aufgabe gespeichert
- aus der Schwierigkeit und dem Erfolg einer Aufgabe werden mit Hilfe der probabilistischen Testtheorie und dem Transferable-Belief-Modell ein Wert für die Kompetenz des Lerners für dieses Paar berechnet
- für ein Symbol wird das gewichtete Mittel über die Kompetenzen des Symbols berechnet
- Lernermodell wird ständig evaluiert und verbessert

Lernermodell

- kann vom Lerner genutzt werden, um sich über seinen eigenen Stand zu informieren
- kann aber auch vom System genutzt werden, um aus der Datenbank der Lernobjekten samt ihren Metadaten ein angepasstes, den Kompetenzen des Lerners entsprechendes Buch zu generieren

Pädagogische Szenarien aus LeActiveMath

- Begriffe kennenlernen (= LearnNew)
- Inhalte wiederholen (= Rehearse)
- Aufgaben üben (= Workbook)
- Fähigkeiten trainieren (= Train Competency)
- Prüfungen simulieren (= ExamSimulation)


Pädagogische Szenarien aus LeActiveMath

- Begriffe kennenlernen (= LearnNew)
- Inhalte wiederholen (= Rehearse)
- Aufgaben üben (= Workbook)
- Fähigkeiten trainieren (= Train Competency)
- Prüfungen simulieren (= ExamSimulation)

Reiss et al. 2005, S. 25

Pädagogische Szenarien - Beispiel

Betrachten wir ein pädagogische Szenario an einem Beispiel:

http://localhost:8080/ActiveMath2/main/menu.cmd

komplexe Lernobjekte

Bei der Analyse unseres Materials ergab sich

- einige Stellen lassen sich nur schwer in Lernobjekte unterteilen
- ▶ einige Lernobjekte können nicht alleine stehen, da Sie sich auf andere beziehen
- einige Lernobiekte benötigen spezielles Vorwissen/"Voraufgaben" bzw. beziehen sich auf spezielle Beispiele
- einige Materialien sind schon nach bestimmten didaktischen Ideen aufgebaut, die erhalten bleiben sollen unsere Lösung sind komplexe Lernobjekte (CLOs)

CLO - Arten von CLOs

orientiert sich an der Struktur des VEMA-Materials

- ► Hinführung-CLO (= Introduction-CLO)
- Begründen/Beweisen/Interpretieren-CLO (= Info/Interpretation/Explanation-CLO)
- Anwendung-CLO (= Application-CLO)
- typische-Fehler-CLO (= Misconception-CLO)
- Aufgaben-CLO (= Practice-CLO)
- ► Weiterführendes-CLO (= Supplement-CLO)

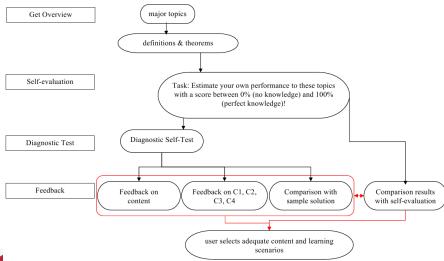
Pädagogische Szenarien mit CLOs

Choose your pages or use the preselection buttons, then create the book:
Overview
☐ Introduction
☐ Info
☐ Motivation / Interpretation / Explanation
Application
☐ Typical Mistakes
☐ Exercises
☐ Supplements
Select All Select Basic (with intro) Select Basic (without intro) Select Rehearse

Create Book

Szenarien

- Basisbuch ohne Hinführung (Übersicht, Info, BBI, Anwendung, typische Fehler, Aufgaben)
- Basisbuch mit Hinführung (wie oben + Hinführung)
- Formelsammlung (Info)
- Übungsbuch (Aufgaben)
- Testvorbereitung (Info, Aufgaben)
- diagnostische Kompetenzen erarbeiten (typische Fehler)
- Fachwissen vertiefen (Info, Anwendung, Weiterführendes)


Lern-Beratungs-Komponente

- Lerner haben spezifisches Vorwissen zu den angebotenen Inhalten aus der Schule
- das Lernermodell muss also mit entsprechenden Daten gefüttert werden
- das individuelle Vorwissen benötigt nicht nur ein individuelles Lernermodell, sondern auch eine individuelle Auswahl an Büchern

Idee: Lern-Beratungs-Komponente, die eine erste Prüfung der Fähigkeiten vornimmt und dann Vorschläge zur Weiterarbeit macht

Evaluation

Ziele der Evaluation

- Usability: Wie wird die Benutzbarkeit durch die Lerner bewertet.
- Usage: Werden die Remedial Szenarios und die Lern-Beratungs-Komponente angenommen und erfüllen sie ihren Zweck?
- Ist Math-Bridge gegenüber bestehenden Lösungen (insbesondere VEMA) vergleichbar oder besser? (insbesondere Fragestellung in KS/PB)

Komponenten der Evaluation

- Interviews
- Befragungen
- Vor- und Nachtest Lernzuwachses

Design der Vor- und Nachtests

- Jede einzelne Gruppe, die untersucht wird, wird in zwei Teilgruppen aufgeteilt
- Insgesamt gibt es 4 Testhefte mit jeweils mind. 8 Aufgaben
- Durch die unten stehende Aufteilung wird sicher gestellt, dass kein Proband eine Aufgabe zweimal bekommt und dennoch die Ergebnisse nachverfolgbar sind.

	Vortest		Nachtest	
Teilgruppe I	Heft A	Heft C	Heft R	Heft D
Teilgruppe II	Heit A	Heft D	Hell D	Heft C

Durchführung der Evaluation

Pilotstudie in Kassel im März (eVorkurs)

- Pilotierung der Testitems (auch in Paderborn)
- erste Interviews mit einzelnen Teilnehmern
- Woche 1 und 2 mit Math-Bridge, Woche 3 und 4 mit VEMA

Hauptstudie in Kassel und Paderborn (eVorkurse)

- Vor- und Nachtest
- Kassel: VEMA, Paderborn: Math-Bridge
- Fragebogen
- Interviews mit einzelnen Teilnehmern

Das Proiekt

Vielen Dank für Ihre Aufmerksamkeit!

Reinhard Hochmuth, Rolf Biehler, Pascal R. Fischer, Thomas Wassong

http://mathbridge.math.upb.de

